Title: | Computation of NTLKwIEx Distribution Properties |
---|---|
Description: | Implements statistical tools for analyzing, simulating, and computing properties of the New Topp-Leone Kumaraswamy Inverse Exponential (NTLKwIEx) distribution. See Atchadé M, Otodji T, and Djibril A (2024) <doi:10.1063/5.0179458> and Atchadé M, Otodji T, Djibril A, and N'bouké M (2023) <doi:10.1515/phys-2023-0151> for details. |
Authors: | Mintodê Nicodème Atchadé [aut], Théophile Otodji [aut, cre] |
Maintainer: | Théophile Otodji <[email protected]> |
License: | GPL-2 |
Version: | 0.1.0 |
Built: | 2024-11-02 03:57:15 UTC |
Source: | https://github.com/cran/NTLKwIEx |
This function calculates the Cumulative density function (CDF) of the NTLKwIEx distribution.
C_NTLKwIEx(x, teta, alpha, a, b, m)
C_NTLKwIEx(x, teta, alpha, a, b, m)
x |
Value up to which to calculate the CDF. |
teta |
Parameter teta of the distribution representing the distribution of the inverse exponential component. |
alpha |
Parameter alpha of the distribution representing the distribution of the new proposal component. |
a |
Parameter a of the distribution representing the distribution of the Kumaraswamy component. |
b |
Parameter b of the distribution representing the distribution of the Kumaraswamy component. |
m |
Parameter m of the distribution representing the distribution of the Topp Leone component. |
It takes parameters x, teta, alpha, a, b, and m, and returns the CDF value at x based on these parameters. The formula used for the calculation is provided in the documentation header. The Cumulative Distribution Function (CDF) of the NTLKwIEx distribution is defined as:
where .
Value of the CDF for the NTLKwIEx distribution evaluated at x
This dataset contains failure times measured in hours from an accelerated life test with 59 conductors.
data(ConductorFailureTimes)
data(ConductorFailureTimes)
A numeric vector of failure times.
This dataset contains failure times (measured in hours) obtained from an accelerated life test involving 59 conductors. The data are presented as a numeric vector.
Nasiri, B., et al. (2010). "Bayesian analysis of the accelerated life model with Type-II censoring." Journal of Statistical Planning and Inference, 140(6), 1565-1572.
Schafft, H. A., et al. (1987). "Reproducibility of the accelerated test for electric cable insulation." IEEE Transactions on Electrical Insulation, 22(5), 739-746.
This function estimates the parameters of the NTLKwIEx distribution while adhering to parameter constraints. It employs the maximum likelihood estimation method and returns estimated values for each parameter based on a given dataset and the specified constraints.
E_NTLKwIEx(data)
E_NTLKwIEx(data)
data |
Numeric vector of data values. |
Numeric vector of estimated parameters.
The Probability Density Function (PDF) of the NTLKwIEx distribution is defined as:
P_NTLKwIEx(x, teta, alpha, a, b, m)
P_NTLKwIEx(x, teta, alpha, a, b, m)
x |
Value to evaluate the PDF at |
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
Value of the PDF for the NTLKwIEx distribution evaluated at x
This function generates a plot of the Cumulative Distribution Function (CDF) of the NTLKwIEx distribution over a specified range of x values.
Plot_CNTLKwIEx(teta, alpha, a, b, m, min_x, max_x)
Plot_CNTLKwIEx(teta, alpha, a, b, m, min_x, max_x)
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
min_x |
Minimum value of x for the plot |
max_x |
Maximum value of x for the plot |
A plot of the CDF of the NTLKwIEx distribution
This function generates a graph of the probability density function (PDF) of the NTLKwIEx distribution over a specified range of x values.
Plot_PNTLKwIEx(teta, alpha, a, b, m, min_x, max_x)
Plot_PNTLKwIEx(teta, alpha, a, b, m, min_x, max_x)
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
min_x |
Minimum value of x for the graph |
max_x |
Maximum value of x for the graph |
A graph of the PDF of the NTLKwIEx distribution
This function calculates the quantile value of the NTLKwIEx distribution for a given probability p.
Q_NTLKwIEx(p, teta, alpha, a, b, m)
Q_NTLKwIEx(p, teta, alpha, a, b, m)
p |
Probability for which the quantile value is to be calculated (0 <= p <= 1) |
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
The quantile value corresponding to the probability p for the NTLKwIEx distribution
This function generates random samples from the NTLKwIEx distribution based on the given parameters.
R_NTLKwIEx(n, teta, alpha, a, b, m)
R_NTLKwIEx(n, teta, alpha, a, b, m)
n |
Number of random samples to generate |
teta |
Parameter teta of the distribution |
alpha |
Parameter alpha of the distribution |
a |
Parameter a of the distribution |
b |
Parameter b of the distribution |
m |
Parameter m of the distribution |
A vector of n random samples from the NTLKwIEx distribution
This function generates a histogram that depicts the distribution of the provided input data. Additionally, it estimates the parameters of a distribution that would correspond to the given data. By overlaying the estimated density function onto the histogram, Sim_NTLKwIEx enables an immediate comparison between the empirical distribution and the estimated one. Sim_NTLKwIEx proves to be a valuable tool for initial data exploration, streamlining trend identification, and understanding key features. Its usage comes recommended for tasks that require a swift exploratory analysis of data distributions.
Sim_NTLKwIEx(data)
Sim_NTLKwIEx(data)
data |
Numeric vector of data values. |
Numeric vector of estimated parameters.
Sim_NTLKwIEx(c(38.181, 38.542, 38.928, 39.334,35.8))
Sim_NTLKwIEx(c(38.181, 38.542, 38.928, 39.334,35.8))